홈 • Knowledge Pathway • Pathologist Pathway • Image Reliability is the Foundation of Computational Pathology Image Reliability is the Foundation of Computational Pathology Prof. Kyoung Bun Lee Clinical Professor, Pathology, Seoul National University College of Medicine Pathology is among the last departments in the hospital that are not yet digitized. Given pathology’s contributions across healthcare, the full effect of information systems on healthcare will not be fully realized until the specialty transitions to digital. I participated in a global panel discussion to examine the digital transformation of pathology labs and practices, along with Dr. Cory Roberts and Dr. Rajesh Dash. We talked about progress in establishing standards, emerging best practices related to calculating return on investment, and experiences with digital implementation. At Seoul National University College of Medicine, we began a journey to digital in 2018 and now practice digital and computational pathology. Although pathologists, histotechnicians, and support staff readily accept digital workflows, the pace of adaptation to digital pathology is slow. The speed of transition to on-screen diagnosis and gaining confidence in image quality and image reliability seems dependent on a number of factors related to the monitor and gaining confidence in image quality and image reliability. The first factor is pathologists’ confidence in making a diagnosis on a monitor. On-screen diagnosis introduces new considerations that impact pathologists’ daily practice. For example, the monitor screen has a larger field of view than a microscope, and therefore, it takes additional time to view a whole slide. H&E colors may display differently via a monitor, which may require an adjustment period for the user. On-screen diagnosis also requires changes in practice patterns for histotechnicians, who must ensure that all slides are free from mechanical elements that could cause malfunction of scanners or auto-focusing errors. A second factor is a need for discussion within the pathology community on quality control of digital images, and if and when to employ advanced technologies to verify the quality or reliability of images. This need provides an opportunity for pathology teams to apply new techniques to assess the quality of staining and provide feedback to laboratories for quality control. At my institution, we have experienced the common causes of errors, such as dust or air bubbles in core biopsies. Collecting baseline data to assess the range in which the analysis algorithm or autofocus functions worked well or not can be used to develop an automatic technique to detect errors and overcome them in the future. I see a paradox in that pathologists and histotechnicians are spending more time and effort in order to use automatic or digitizing technology in pathology. In radiologic imaging, there have been many attempts to use AI technology to improve image quality and try to verify them by non-inferiority testing compared to traditional imaging protocols. Although there are many objections to using synthetic or artificially manipulated images for a confirmatory diagnosis like pathology, I think that reliability can be sufficiently obtained through a comparative test with a conventional system such as a digital pathology system which has been approved for clinical use. Looking forward, we are starting to see that deploying AI technology on pathology images and molecular data can drive more quantitative and analytic biology and additional histologic information from patients’ samples. Many in vivo diagnostic skills can be developed to select patients requiring additional diagnostic tests, so they don’t lose treatment opportunities or undergo unnecessary biopsies. For example, the integration of radiomics and special information of histologic features is a good challenge to use for in vivo diagnosis technology and histology. I am intrigued by the potential presented by slide-free images and support the evolution of traditional H&E slides to digital images. As our profession undertakes the transition from traditional methods to digital and computational pathology, there is much to learn from one another. Resources, such as The Leeds Guide to Digital Pathology, are helpful models for sharing real-world experiences. We can learn together from daily experience to accelerate our collective transition to a digital future. 발표자 소개 Prof. Kyoung Bun Lee , Clinical Professor, Pathology, Seoul National University College of Medicine Professor Lee graduated from Seoul National University College of Medicine in 2002 and is a Clinical Professor at Seoul National University Hospital (SNUH). She specialized in hepato-pancreatic biliary pathology, renal pathology, and bone & soft tissue pathology. In Seoul National University Hospital (SNUH), Prof Lee manages the pathology department’s laboratory automation and computerization system since 2010. She is also on the Korean Society of Pathologists (KSP) committee board as Information Director. Prof Lee led the digital pathology project at SNUH in 2018, where she introduced a digital pathology system for primary diagnosis; a first in Korea. Besides heading the digital pathology project at SNUH, Prof Lee is passionate about advocating the value of digital pathology, automation of pathology workflow for primary diagnosis and establishment of data-pipeline for computational pathology. 라이카 바이오시스템즈 Knowledge Pathway 콘텐츠는 에서 이용할 수 있는 라이카 바이오시스템즈 웹사이트 이용 약관의 적용을 받습니다. 법적고지. 라이카 바이오시스템즈 웨비나, 교육 프레젠테이션 및 관련 자료는 특별 주제 관련 일반 정보를 제공하지만 의료, 규정 또는 법률 상담으로 제공되지 않으며 해석되어서는 안 됩니다. 관점과 의견은 발표자/저자의 개인 관점과 의견이며 라이카 바이오시스템즈, 그 직원 또는 대행사의 관점이나 의견을 나타내거나 반영하지 않습니다. 제3자 자원 또는 콘텐츠에 대한 액세스를 제공하는 콘텐츠에 포함된 모든 링크는 오직 편의를 위해 제공됩니다. 모든 제품 사용에 다양한 제품 및 장치의 제품 정보 가이드, 부속 문서 및 작동 설명서를 참조해야 합니다. Copyright © 2024 Leica Biosystems division of Leica Microsystems, Inc. and its Leica Biosystems affiliates. All rights reserved. LEICA and the Leica Logo are registered trademarks of Leica Microsystems IR GmbH. Knowledge Pathway의 이 교육용 웨비나, 학습 자료 또는 자습서를 보고 인증 기관에 교육 크레딧을 신청하려면 다음 양식을 다운로드하십시오. 획득한 교육 크레딧을 개인 성적표에 직접 기입할 수 있습니다. (단, 대한민국은 적용 대상 아님) 자가보고식 교육학점을 신청 하세요 최신 Knowledge Pathway를 이메일로 직접 받아볼 수 있습니다. 지금 구독하세요! 더 많은 훌륭한 집필진을 기다리고 있습니다. 원고를 보내주시면 담당자가 연락드리겠습니다. Send your writing! SHARE Facebook Twitter LinkedIn Email